Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 152(3): 403-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24862879

RESUMO

We sought a rapid, non-intrusive, whole-tissue measure of the functional photosystem II (PS II) content in leaves. Summation of electrons, delivered by a single-turnover flash to P700(+) (oxidized PS I primary donor) in continuous background far-red light, gave a parameter S in absorbance units after taking into account an experimentally determined basal electron flux that affects P700 redox kinetics. S was linearly correlated with the functional PS II content measured by the O(2) yield per single-turnover repetitive flash in Arabidopsis thaliana expressing an antisense construct to the PsbO (manganese-stabilizing protein in PS II) proteins of PS II (PsbO mutants). The ratio of S to z(max) (total PS I content in absorbance units) was comparable to the PS II/PS I reaction-center ratio in wild-type A. thaliana and in control Spinacea oleracea. Both S and S/z(max) decreased in photoinhibited spinach leaf discs. The whole-tissue functional PS II content and the PS II/photosystem I (PS I) ratio can be non-intrusively monitored by S and S/z(max), respectively, using a quick P700 absorbance protocol compatible with modern P700 instruments.


Assuntos
Arabidopsis/metabolismo , Clorofila/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo , Arabidopsis/efeitos da radiação , Transporte de Elétrons , Cinética , Modelos Biológicos , Oxirredução , Oxigênio/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Spinacia oleracea/efeitos da radiação
2.
J Exp Bot ; 63(13): 4781-95, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22922640

RESUMO

Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b6f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.


Assuntos
Arabidopsis/genética , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , RNA Antissenso/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Arabidopsis/ultraestrutura , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Luz , Fenótipo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA de Plantas/genética
3.
Plant Cell Environ ; 30(1): 53-66, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17177876

RESUMO

With average global temperatures predicted to increase over the next century, it is important to understand the extent and mechanisms of C4 photosynthetic acclimation to modest increases in growth temperature. To this end, we compared the photosynthetic responses of two C4 grasses (Panicum coloratum and Cenchrus ciliaris) and one C4 dicot (Flaveria bidentis) to growth at moderate (25/20 degrees C, day/night) or high (35/30 degrees C, day/night) temperatures. In all three C4 species, CO2 assimilation rates (A) underwent significant thermal acclimation, such that when compared at growth temperatures, A increased less than what would be expected given the strong response of A to short-term changes in leaf temperature. Thermal photosynthetic acclimation was further manifested by an increase in the temperature optima of A, and a decrease in leaf nitrogen content and leaf mass per area in the high- relative to the moderate-temperature-grown plants. Reduced photosynthetic capacity at the higher growth temperature was underpinned by selective changes in photosynthetic components. Plants grown at the higher temperature had lower amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase and cytochrome f and activity of carbonic anhydrase. The activities of photosystem II (PSII) and phosphoenolpyruvate carboxylase were not affected by growth temperature. Chlorophyll fluorescence measurements of F. bidentis showed a corresponding decrease in the quantum yield of PSII (phi(PSII)) and an increase in non-photochemical quenching (phi(NPQ)). It is concluded that through these biochemical changes, C4 plants maintain the balance between the various photosynthetic components at each growth temperature, despite the differing temperature dependence of each process. As such, at higher temperatures photosynthetic nitrogen use efficiency increases more than A. Our results suggest C4 plants will show only modest changes in photosynthetic rates in response to changes in growth temperature, such as those expected within or between seasons, or the warming anticipated as a result of global climate change.


Assuntos
Adaptação Fisiológica , Temperatura Alta , Fotossíntese , Poaceae/fisiologia , Clorofila/metabolismo , Clorofila A , Nitrogênio/metabolismo , Poaceae/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...